
Atas dasar untuk membantu industri kecil khususnya pembuat Tepung. Tapioka agar memanfaatkan teknologi yang ada tentunya membuat pekerjaan yang sebelumnya membutuhkan banyak tenaga menjadi efisien dan efektif dalam membantu meringankan beban atau kendal ayang ada pada perindustrian ini.

1.2 Tujuan
Tujuan penelitian ini yakni:
1. Memahami cara kerja Mesin Pemotong dan Penepung Ubi Kayu.

1.3 Cakupan Penelitian
Cakupan dari penelitian ini adalah:
1. Perancangan konsep menggunakan metode Pahl and Beitz.
2. Design gambar menggunakan software Solid Works.

METODE PENELITIAN
Metode penelitian yang digunakan yaitu sebagai berikut:

Gambar 1 flowchart
Penelitian pada Perancangan Mesin Pemotong dan Penepung ini diawali dengan mengidentifikasi masalah yang ada dikalangan masyarakat, merumuskan masalah yang ada, membuat tujuan dari perancangan, pengumpulan data melalui berbagai metode, perancangan konsep, analisa konsep, perancangan detail dan akhir dari perancangan ini adalah kesimpulan.

Gambar 2 Gambaran mesin: (a) tampak sisi depan; (b) tampak sisi belakang.

1.1 Perhitungan Volume Mesin Pemotong 1

V Mesin = p x l x t
= 300 x 100 x 350
= 10.500.000 mm³ = 10,5 l

2.2 Perhitungan Tools Pemotong 1

V poros pemotong = π r² t
= 3,14 x 15² x 200 = 141300 mm³
V pisau = p x l x t
= 200 x 70 x 2 = 28000 mm³
V total = 141.300 + 28.000
= 169.300 mm³ = 1,7 x 10⁻⁴ m³

ρ stainless steel = 7700 kg/m³
Massa tools pemotong = ρ material x V total
= 7700 kg/m³ x 1,7 x 10⁻⁴ m³ = 1,31 kg

2.3 Penentuan Daya Motor Listrik 1

Dik : Massa tools pemotong = 1,31 kg
Jari – jari putaran tools = 120 mm (toleransi 10 mm kanan dan kiri)
Daya motor terpasang (P) = 1 HP (746 watt)
Total massa 1 buah ubi kayu adalah sekitar 800 g = 0,8 kg
Jadi, beban kerja yang ditanggung oleh motor dalam bekerja = Massa tools pemotong + massa 1 buah ubi kayu = 1,31 + 0,8 = 2,11 kg

- T = F x r
 = 2,11 kg x 120 mm = 253 kg.mm
- Daya motor direncanakan 1 HP, dengan putaran 1440 RPM

\[P_{motor} = \frac{\pi n \times T_{motor}}{60 \text{ det}} \]
746 watt = 2 . 3,14 . \frac{1440}{60} . T_{motor}
T_{motor} = \frac{746 \text{ watt}}{2 . 3,14 . \frac{1440}{60}} = 4,95 \text{ kg.m} = 4950 \text{ kg.mm}

- Torsi yang dibutuhkan pada mesin pemotong = 2625 kg.mm
 Output Torsi motor yang dihasilkan = 4950 kg.mm
- Daya minimal yang dibutuhkan
\[P_{\text{min}} = \frac{2 \pi n}{60} \times T_{\text{motor}} \]
\[= 2 \times 3,14 \times \frac{100 \text{ rpm}}{60} \times 4,95 \text{ kg.m} = 49,7 \text{ watt} \]
\[P_{\text{min}} = 0,66 \text{ HP} \]
Karena 0,66 HP < 1 HP, maka motor listrik dengan daya 1 HP dapat dipakai.

2.4 Perhitungan Daya Rencana dan Torsi Motor Listrik 1

\[P_d = f_c \times P \]
Keterangan : \(P_d \) = Daya rencana (kW)
\[= 2 \times 0,746 \text{ kW} \]
\[= 1,49 \text{ kW} \]

\(f_c \) = 2 dipilih berdasarkan tabel faktor koreksi daya rata-rata

\[T = \frac{P_d}{2 \pi \cdot \frac{746 \text{ watt}}{60}} \]
Keterangan : \(T \) = Torsi
\[= \frac{2 \times 1440}{2 \times 3,14 \times 1440} \]
\[= 4,94 \text{ kg.m} \]

2.5 Perencanaan Poros 1

Diketahui : \(P \) = 0,746 kW
\(n \) = 1440 rpm

- Daya Rencana (\(P_d \))
\[P_d = f_c \times P \]
\[= 2 \times 0,746 \text{ kW} = 1,49 \text{ kW} \]

- Torsi (\(T \))
\[T = \frac{P_d}{\pi \cdot 1440} \]
\[= 9,74 \times 10^4 \times 1440 \]
\[= 1007,8 \text{ kg.mm} \]

- Material S45C, dengan tegangan tarik (\(\sigma \)) 58 kg/mm²

- Tegangan Geser yang diizinkan
\[\tau_a = \sigma \]
Ket : \(Sf_1 = 6,0 \) karena memakai baja paduan
\[= \frac{sf1 \times sf2}{sf1 \times sf2} \]
\[= \frac{60 \times 3,14}{60 \times 3,14} \]
\[= 7,44 \text{ kg/mm}^2 \]
\(Sf \) adalah faktor keamanan atau safety faktor

- Diameter poros
\[d_s = \left[\frac{K_c \cdot C_b \cdot T}{1,5} \right]^{1/3} \]
Ket : \(K_c = 2,0 \) dikarenakan adanya kejutan atau tumbukan
\[= \left[\frac{2,0 \times 1,0 \times 1007,8}{1,5} \right]^{1/3} \]
\[= 12,5 = 14 \text{ mm} \]

- Tegangan Geser yang terjadi
\[\tau = \frac{d_s^3}{54} \]
\[= \frac{14^3}{54} \times 1007,8 \]
\[= 1,87 \text{ kg/mm}^2 \]

- Gaya Tangensial
\[F' = \frac{T}{d_s/2} \]
\[= \frac{14^2}{1007,8} \]
\[= 143,97 \text{ kg} \]

2.6 Perencanaan Pulley and Belt 1

Diketahui : Daya (\(P \)) = 0,746 kW
\(n \) motor (\(n_i \)) = 1440 rpm
diameter poros = 10 mm
n yang digerakkan \((n_s) = 500 \text{ rpm} \)
rasio antar \(n_1 \) dan \(n_2 \) \((i) = 2 \)

- Berdasarkan putaran motor dan daya rencana, maka terpilihlah penampang sabuk-V tipe A.
- Diameter min. yang anjurkan sabuk-V tipe A = 95 mm

 \[
 d_p = 95 \text{ mm} \quad \text{Ket: } d_i = \text{diameter poros}
 \]

 \[
 D_p = 95 \times I \quad d_r = \text{diameter lingkaran jarak puli A}
 \]

 \[
 = 95 \times 2 \quad d_k = \text{diameter luar puli A}
 \]

 \[
 = 190 \text{ mm} \quad D_k = \text{diameter lingkaran jarak puli B}
 \]

 \[
 d_k = d_r + (2 \times K) \quad D_k = \text{diameter luar puli B}
 \]

 \[
 = 95 + (2 \times 4.5) = 104 \text{ mm}
 \]

 \[
 D_k = D_p + (2 \times K) \quad = 190 + (2 \times 4.5) = 199 \text{ mm}
 \]

- Kecepatan sabuk V

\[
\nu = \frac{60 \times 1000}{3.14 \times 95 \times 1400} = \frac{60000}{71.6} \ approx \ 7,16 \text{ m/s}
\]

7,16 m/s < 30 m/s, baik.

- Panjang keliling sabuk \((L) \)

\[
L = 2C + \frac{\pi}{2} (d_p + D_p) + \frac{1}{4c} (D_p - d_p)^2
\]

\[
= 2(300) + \frac{31.4}{2} (95 + 190) + \frac{1}{4}(300) (190 - 95)^2
\]

\[
= 600 + 1,57 (285) + 9,025 \approx 1200
\]

\[
= 600 + 447,45 + 7,5 = 1.054,95 \text{ mm} = 1067 \text{ mm}
\]

Didapat nomor nominal sabuk – V : 42 inch, \(L = 1067 \text{ mm} \)

2.7 Perhitungan Volume Mesin Penepung 2

\[
V_1 = \rho \times l \times t
\]

\[
= 250 \times 200 \times 70
\]

\[
= 3.500.000 \text{ mm}^3 \quad = 3,5 \ell
\]

\[
V_2 = \rho \times H
\]

\[
= \frac{2}{(a+b)+t} \times H
\]

\[
= (240+110) \times 180
\]

\[
= \frac{63000}{2} \times 200 = 6.300.000 \text{ mm}^3 \quad = 6,3 \ell
\]

\[
V_{total} = V_1 + V_2
\]

\[
= 3,5 + 6,3 \ell = 9,8 \ell
\]

2.8 Perhitungan Tools Penepung 2

Massa tools pemotong \(= \rho \) material \(\times \) \(V \) total

\[
= 7700 \text{ kg/m}^3 \times 1,7 \times 10^{-4} \text{ m}^3 = 1,31 \text{ kg}
\]

2.9 Kapasitas Mesin Penepung 2

Kapasitas Mesin Penepung dalam 1 jam adalah:

\[
W_{pk} = \frac{t}{x} \times 3600
\]

\[
= \frac{15 \text{ kg}}{48 \times 3600} \times t = \frac{2880}{60} = 48
\]

\[
= 112,5 \text{ kg/jam}
\]
2.10 Perhitungan Daya Rencana Torsi Motor Listrik 2

- \(P_d = f_c \cdot P \)
 \[= 2 \cdot 0,746 \text{ kW} = 1,49 \text{ kW} \]
 \(f_c \) = 2 dipilih berdasarkan tabel faktor koreksi daya rata-rata

Keterangan :

- \(P_d \) = Daya rencana (kW)
- \(f_c \) = Faktor koreksi
- \(P \) = Daya motor penggerak

\[T = \frac{P}{2 \pi n/60} \text{ Keterangan : } T = \text{Torsi} \]

\[= \frac{0,746}{2 \cdot 3,14 \cdot 1440/60} \]

\[= 4,94 \text{ kg.m} \quad n = \text{putaran (rpm)} \]

2.11 Perencanaan Poros 2

- Diameter poros
 \[d_h = \left[\frac{5,1}{K_B \cdot C_B \cdot T} \right]^{1/3} \]
 \[= \left[\frac{5,1}{2,0 \cdot 1,0 \cdot 1007,8} \right]^{1/3} \]
 \[= 12,5 = 14 \text{ mm} \]

2.12 Perencanaan Pulley and Belt 2

Berikut dibawah ini merupakan rumus dari perhitungan perencanaan pulley and belt :

Diketahui :

- Daya \(P \) = 0,746 kW
- \(n \) motor \(n_1 \) = 1440 rpm
- diameter poros = 10 mm
- \(n \) yang digerakkan \(n_2 \) = 2880 rpm
- rasio antara \(n_1 \) dan \(n_2 \) \(i \) = 0,5

- Berdasarkan putaran motor dan daya rencana, maka terpilihlah penampang sabuk-V tipe A.
- Diameter min. yang anjurkan sabuk-V tipe A = 95 mm

\[d_p = 95 \text{ mm} \]

\[D_p = 95 \times i \]

\[= 95 \times 0,5 \]

\[= 47,5 \text{ mm} \]

\[d_k = D_p + (2 \times K) \]

\[= 47,5 + (2 \times 4,5) \]

\[= 56,5 \text{ mm} \]

\[D_k = d_p + (2 \times K) \]

\[= 95 + (2 \times 4,5) \]

\[= 104 \text{ mm} \]

- Kecepatan sabuk V

\[v = \frac{60 \times 1000}{3,14 \cdot 95 \cdot 1440} \]

\[= \frac{60000}{2256,25} \]

\[= 7,16 \text{ m/s} \]

7,16 m/s < 30 m/s, baik.

- Panjang keliling sabuk \(L \)

\[L = 2C + \frac{\pi}{2} (d_p + D_p) + \frac{1}{4C} (D_p - d_p)^2 \]

\[= 2 \cdot 300 + \frac{3,14}{2} (95 + 47,5) + \frac{1}{4 \cdot (300)} (47,5 - 95)^2 \]

\[= 600 + \frac{3,14}{2} (142,5) + \frac{2256,25}{1200} \]

\[= 823,725 + 1,9 \]

\[= 825,625 \text{ mm} \]

\[= 813 \text{ m} \]

Didapat nomor nominal sabuk – V : 32 inch, \(L = 813 \text{ mm} \)
Dari metodologi dan hasil perhitungan diatas maka diperoleh data sebagai berikut :

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama</th>
<th>Spesifikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dimensi</td>
<td>p : 1500 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>l : 500 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t : 1300 mm</td>
</tr>
<tr>
<td>2.</td>
<td>Motor Listrik</td>
<td>Daya : 1 HP (746 Watt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage : AC 220 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase : 1 Phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frekuensi : 50 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pole : 4</td>
</tr>
<tr>
<td>3.</td>
<td>Kerangka</td>
<td>Material : Besi Galvanis</td>
</tr>
<tr>
<td>4.</td>
<td>Pulley</td>
<td>d_p : 95 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D_p : 190 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d_k : 104 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D_k : 199 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keterangan :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d_p = diameter lingkaran jarak bagi puli A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d_k = diameter luar puli A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D_p = diameter lingkaran jarak bagi puli B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D_k = diameter luar puli B</td>
</tr>
<tr>
<td>5.</td>
<td>Belt</td>
<td>Nomor nominal sabuk – V : 32 inch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L : 813 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C : 285,76 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keterangan :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L = panjang keliling sabuk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C = Jarak sumbu poros</td>
</tr>
<tr>
<td>6.</td>
<td>Kapasitas Mesin</td>
<td>112,5 kg/jam</td>
</tr>
</tbody>
</table>

Berdasarkan pada data tabel tersebut, Mesin Pemotong dan Penepung Ubi Kayu yang telah dirancang diharapkan dapat bekerja sesuai dengan kebutuhan masyarakat dan dapat terus dimanfaatkan oleh masyarakat khususnya pada perindustrian tersebut.

KESIMPULAN

Kesimpulan yang didapat dari Perancangan Mesin Pemotong dan Penepung Ubi Kayu adalah sebagai berikut :
1. Dapat memahami cara kerja dari hasil perancangan mesin yang telah dirancang yakni Mesin Pemotong dan Penepung Ubi Kayu.
2. Dapat merancang sedemikian rupa komponen – komponen pada Mesin Pemotong dan Penepung Ubi Kayu.

4.

DAFTAR PUSTAKA
